5,359 research outputs found

    Learning and adaptation in physical agents

    No full text
    Learning and adaptation is fundamental for autonomous agents that operate in a physical world and not a computer network. The paper is providing a general framework of skills learning within behaviour logic framework of agents that communicate, sense and act in the physical world. It is advocated that playfulness can be important in learning and to improving skills of agents

    Diffusion Kinetics in Radiation Chemistry. II. One-Radical-One-Solute Model; Calculations

    Get PDF
    The general diffusion‐kinetic equations are applied to a one‐radical‐one‐solute model of the radiolysis of dilute aqueous solutions. The validity of the prescribed diffusion approximation is examined. Results of calculations of the effect on the molecular and radical yields of the following parameters are given: solute concentration, solute depletion, shape of initial radical distribution, radical density, diffusion coefficients, and rate constants. Conditions under which a straight track of equal and equidistant spherical spurs can be replaced by either isolated spherical spurs or an axially homogeneous cylindrical track are examined

    Nonmolecular nature of nitric-oxide-inhibited thermal decomposition of n-butane

    Get PDF
    The thermal decomposition of most organic molecules is generally accepted to occur at least in part via a free radical chain process. Since Hinshelwood and Staveley (1) discovered that small additions of nitric oxide reduced the rate of thermal decomposition, there has been much controversy (2) concerning the nature of the “residual” reaction remaining after further additions of inhibitor produce no further decrease in rate. Jach, Stubbs, and Hinshelwood (3) have shown this limiting rate to be independent of the inhibitor used and attribute this residual reaction to a nonchain molecular process in which the parent molecule breaks up, in a single step, into stable products

    Quantum Mechanics of the H+H2 Reaction: Exact Scattering Probabilities for Collinear Collisions

    Get PDF
    The H + H2 reaction is very important in theoretical chemical dynamics (1-4). A model that is often used to study this reaction is to restrict the atoms to lie on a nonrotating line throughout the collision and to consider that the system is electronically adiabatic, i.e., it remains the lowest electronic state throughout the collision. This reduces the problem to scattering of three particles on a potential energy surface which is a function of two linearly independent coordinates. This model has been studied classically (5-8), and Mortensen and Pitzer (9) have calculated exact quantum mechanical reaction probabilities at five relative translational energies E0. In this Communication, we present some results of our more extensive exact calculations on this model of the H + H2 reaction and show their consequences for the validity of approximate theories of chemical reactions. For the cases considered here, the assumption of electronic adiabaticity causes very little error (10)

    Test of variational transition state theory against accurate quantal results for a reaction with very large reaction-path curvature and a low barrier

    Get PDF
    We present three sets of calculations for the thermal rate constants of the collinear reaction I+HI-->IH+I: accurate quantum mechanics, conventional transition state theory (TST), and variational transition state theory (VTST). This reaction differs from previous test cases in that it has very large reaction-path curvature but hardly any tunneling. TST overestimates the accurate results by factors of 2×10^10, 2×10^4, 57, and 19 at 40, 100, 300, and 1000 K, respectively. At these same four temperatures the ratios of the VTST results to the accurate quantal ones are 0.3, 0.8, 1.1, and 1.4, respectively. We conclude that the variational transition states are meaningful, even though they are computed from a reaction-path Hamiltonian with large curvature, which is the most questionable case

    There Goes the Neighborhood? “Residential Pruning” and the Good Life in Downey

    Get PDF

    Fractional spins and static correlation error in density functional theory

    Full text link
    Electronic states with fractional spins arise in systems with large static correlation (strongly correlated systems). Such fractional-spin states are shown to be ensembles of degenerate ground states with normal spins. It is proven here that the energy of the exact functional for fractional-spin states is a constant, equal to the energy of the comprising degenerate pure spin states. Dramatic deviations from this exact constancy condition exist with all approximate functionals, leading to large static correlation errors for strongly correlated systems, such as chemical bond dissociation and band structure of Mott insulators. This is demonstrated with numerical calculations for several molecular systems. Approximating the constancy behavior for fractional spins should be a major aim in functional constructions and should open the frontier for DFT to describe strongly correlated systems. The key results are also shown to apply in reduced density-matrix functional theory.Comment: 6 pages, 4 figure

    Fractional charge perspective on the band-gap in density-functional theory

    Full text link
    The calculation of the band-gap by density-functional theory (DFT) methods is examined by considering the behavior of the energy as a function of number of electrons. It is found that the incorrect band-gap prediction with most approximate functionals originates mainly from errors in describing systems with fractional charges. Formulas for the energy derivatives with respect to number of electrons are derived which clarify the role of optimized effective potentials in prediction of the band-gap. Calculations with a recent functional that has much improved behavior for fractional charges give a good prediction of the energy gap and also Ï”homo≃−I\epsilon_{{\rm homo}}\simeq-I for finite systems. Our results indicate it is possible, within DFT, to have a functional whose eigenvalues or derivatives accurately predict the band-gap

    Queen control of a key life-history event in a eusocial insect

    Get PDF
    In eusocial insects, inclusive fitness theory predicts potential queen–worker conflict over the timing of events in colony life history. Whether queens or workers control the timing of these events is poorly understood. In the bumble-bee Bombus terrestris, queens exhibit a ‘switch point’ in which they switch from laying diploid eggs yielding females (workers and new queens) to laying haploid eggs yielding males. By rearing foundress queens whose worker offspring were removed as pupae and sexing their eggs using microsatellite genotyping, we found that queens kept in the complete absence of adult workers still exhibit a switch point. Moreover, the timing of their switch points relative to the start of egg-laying did not differ significantly from that of queens allowed to produce normal colonies. The finding that bumble-bee queens can express the switch point in the absence of workers experimentally demonstrates queen control of a key life-history event in eusocial insects. In addition, we found no evidence that workers affect the timing of the switch point either directly or indirectly via providing cues to queens, suggesting that workers do not fully express their interests in queen–worker conflicts over colony life history

    Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation

    Full text link
    We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau-Lifshitz-Gilbert equation proposed by Brown, with the possible addition of spin-torque terms. In the process of constructing this functional in the Cartesian coordinate system, we critically revisit this stochastic equation. We present it in a form that accommodates for any discretization scheme thanks to the inclusion of a drift term. The generalized equation ensures the conservation of the magnetization modulus and the approach to the Gibbs-Boltzmann equilibrium in the absence of non-potential and time-dependent forces. The drift term vanishes only if the mid-point Stratonovich prescription is used. We next reset the problem in the more natural spherical coordinate system. We show that the noise transforms non-trivially to spherical coordinates acquiring a non-vanishing mean value in this coordinate system, a fact that has been often overlooked in the literature. We next construct the generating functional formalism in this system of coordinates for any discretization prescription. The functional formalism in Cartesian or spherical coordinates should serve as a starting point to study different aspects of the out-of-equilibrium dynamics of magnets. Extensions to colored noise, micro-magnetism and disordered problems are straightforward.Comment: 47 pages + appendix, published versio
    • 

    corecore